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ABSTRACT

The new SAP NetWeaver Business Intelligence accelerator
is an engine that supports online analytical processing. It
performs aggregation in memory and in query runtime over
large volumes of structured data. This paper first briefly de-
scribes the accelerator and its main architectural features,
and cites test results that indicate its power. Then it de-
scribes in detail how the accelerator may be used for data
mining. The accelerator can perform data mining in the
same large repositories of data and using the same compact
index structures that it uses for analytical processing. A first
such implementation of data mining is described and the re-
sults of a performance evaluation are presented. Association
rule mining in a distributed architecture was implemented
with a variant of the BUC iceberg cubing algorithm. Test
results suggest that useful online mining should be possible
with wait times of less than 60 seconds on business data that
has not been preprocessed.

1. INTRODUCTION

The SAP NetWeaver Business Intelligence (BI) accelerator
is a new appliance for accessing structured data held in rela-
tional databases. Compared with most previous approaches,
the appliance offers an order of magnitude improvement in
speed and flexibility of access to the data. This improvement
is significant in business contexts where existing approaches
impose quantifiable costs. By leveraging the falling prices of
hardware relative to other factors, the new appliance offers
business benefits that more than balance its procurement
cost.

The BI accelerator was developed for deployment in the IT
landscape of any company that stores large and growing
volumes of business data in a standard relational database.
Currently, most approaches to accessing the data held in
such databases confront IT staff with a maintenance chal-
lenge. Administrators are required to study user behavior
to identify frequently asked queries, then build materialized
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views and database indexes for those queries to boost their
performance. This is skilled work and hence a major cost
driver. At best, response times are improved for the identi-
fied queries, so good judgement is required to satisfy users.
To keep this work within bounds, access to the data is often
restricted by means of predefined reports for selected users.
In some SAP customer scenarios, the space occupied by data
for materialized views is up to three times that required for
the original data from which the views are built.

The new accelerator is based on search engine technology
and offers comparable performance for both frequently and
infrequently asked queries. This enables companies to relax
previous technically motivated restrictions on data access.
For any query against data held in an SAP NetWeaver BI
structure called an InfoCube, the results are computed us-
ing a single compact index structure for that cube. In con-
sequence, users no longer find that some queries are fast be-
cause they hit a materialized view whereas others are slow.
The accelerator makes use of this index structure to deter-
mine the relevant join paths and aggregate the result data
for the query, and moreover to do so in query run time and in
memory. In practical terms, the result is that with the help
of the accelerator, users can select and display aggregated
data, slice it and dice it, drill down anywhere for details, and
expect exact responses in seconds, however unusual their
request, even over cubes containing billions of records and
occupying terabyte volumes.

From the standpoint of company decision making, the key
benefits of SAP NetWeaver BI with the accelerator are
speed, flexibility, and low cost. Average response times for
the queries generated in typical business scenarios are ten
times shorter than traditional approaches, and some times
up to a thousand times shorter. Because the accelerator gen-
erally performs aggregation anew for each individual query,
administrative overhead is greatly reduced and there is no
technical need to restrict user freedom. As for cost, state-of-
the-art hardware can be scaled exactly to customer require-
ments. Current trends in hardware prices suggest that the
accelerator’s total cost of ownership (T'CO) advantage over
manual tuning approaches will likely grow in future.

The rest of this paper is organized as follows. Sections 2
and 3 present the SAP NetWeaver BI accelerator in suffi-
cient detail for the reader to understand its applicability for
data mining: section 2 describes the basic architecture of
the BI accelerator and outlines its main technical features,



and section 3 presents the results of a performance test com-
paring the BI accelerator with an Oracle database. Section
4 describes the data mining implementation in detail and
presents results that indicate its promise. Section 5 con-
cludes with an outlook on future developments.

2. BASIC ARCHITECTURE

The main architectural features of the BI accelerator are as
follows:

e Distributed and parallel processing for scalability and
robustness

e In-memory processing to eliminate the runtime cost of
disk accesses

e Optimized data structures for reads and optimized
structures for writes

e Data compression coding to minimize memory usage
and I/O overhead

The following subsections describe these features more fully.

2.1 Scalable Multiserver Architecture

The BI accelerator runs on commodity blade servers that
can be procured and installed as required to handle increas-
ing volumes. For example, a moderately large instance of the
accelerator may run on 16 blades, each with two processors
and 8 gigabytes (GB) of main memory, so the accelerator
has 128 GB of RAM to handle user requests. The accelera-
tor index structures are compressed by a factor of well over
ten relative to the database tables from which they are gen-
erated, so 128 GB is enough to handle most of the reports
running in most commercial SAP NetWeaver BI systems.
If more memory space is needed in runtime, the acceler-
ator swaps out unused attributes or indexes via LRU for
requested data. To increase space without swapping, either
more RAM can be installed in 8 GB increments on addi-
tional blades or next-generation blades with more than 8
GB per blade can be procured.

The use of scalable and distributed search technology en-
ables investment in hardware and network resources to be
optimized on an ongoing basis to reflect changing availabil-
ity requirements and load levels (see figure 1). In each land-
scape, a name server maintains a list of active services, pings
them regularly and switches to backups where necessary,
and balances load over active services. The first customers
will implement the BI accelerator on preconfigured hard-
ware that can be plugged into their existing landscape. It is
expected that future customers will have the option to con-
figure new hardware dynamically. If the capacity is avail-
able, the accelerator will then be able to scale rapidly to
suit changing load. In an adaptive landscape, accelerator
instances will be replicated as required, by cloning services,
and they will form groups with master and backup servers
and additional cohort name servers for scalability. The mas-
ter index servers will handle both indexing and query load.
Such groups can be optimized for both high availability and
good load balancing, with the overall goal of requiring zero
administration.
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Figure 1: Multiserver architecture for scalability

The accelerator engine can partition large tables horizon-
tally for parallel processing on multiple machines in distrib-
uted landscapes (see figure 2). This enables it to handle
very large data volumes yet stay within the limits of in-
stalled memory. The engine splits such large volumes over
multiple hosts, by a round-robin procedure to build up parts
of equal size, so that they can be processed in parallel. A
logical index server distributes join operations over partial
indexes and merges the partial results returned from them.
This scalability enables the accelerator to run on advanced
computing infrastructures, such as blade servers over which
load can be redistributed dynamically. The accelerator is
designed to run on 64-bit platforms, which work within a 16
EB address space (instead of a 4 GB space for 32-bit plat-
forms).
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Figure 2: Horizontal partitioning of indexes

2.2 Processingin Memory

The BI accelerator works entirely in memory (see figure 3).
Before a query is answered, all the data needed to answer
it is copied to memory, where it stays until the space is
needed for other data. To calculate result sets for analytical
queries, the accelerator engine runs highly optimized algo-
rithms that avoid disk accesses. The engine takes the query
entered by the user, computes a plan for answering it, joins



the relevant column indexes to create a join path from each
view attribute to the BI fact table, performs the required
aggregations, and merges the results for return to the user.
This ability to aggregate during runtime without additional
precalculations is critical for realizing the accelerator’s flex-
ibility and TCO benefits. It frees IT staff from the need
to prebuild aggregates or realign them regularly, and users
benefit from predictable response times.
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Figure 3: Query processing in memory

The accelerator engine decomposes table data vertically,
into columns, that are stored separately (see figure 4). This
columnwise storage is similar to the techniques used by
C-Store [13] and MonetDB [4]. It makes more efficient use
of memory space than row-based storage, since the engine
needs to load only the data for relevant attributes or char-
acteristics into memory. This is appropriate for analytics,
where most users want to see only a selection of data and
attributes. In a conventional database, all the data in the
table is loaded together, in complete rows, whereas the new
engine touches only relevant data columns. The engine can
also sort the columns individually to bring specific entries
to the top. The column indexes are written to memory and
cached as flat files. This concept improves efficiency in two
ways: both the memory footprint of the data and the I/O
flows between CPUs, memory and filer are smaller.

Column storage Classical DB storage

[atr | Atz ([ Tuptet |
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To find all instances of an attribute value:
= Go to the first row
= Check the attribute value
= Go to the next row
= Check the attribute value
= Repeat for each row in the table

To find all instances of an attribute value:
= Go to the attribute column
= Read its row values

Figure 4: Columnwise decomposition of tables

1061

2.3 Optimized Data Structures

The BI accelerator indexes tables of relational data to cre-
ate ordered lists, using integer coding, with dictionaries for
value lookup. These index structures are optimized not only
for read access in very large datasets but also more specif-
ically to work efficiently with proprietary SAP NetWeaver
data structures called BI InfoCubes. A BI InfoCube is an
extended star schema for representing structured data (see
figure 5). A large fact table is surrounded by dimension ta-
bles (D) and sometimes also X and Y tables, where X tables
store time-independent data and Y tables time-dependent
data. Peripheral S tables spell out the values of the integer
IDs used in the other tables.

The BI accelerator metamodel represents an InfoCube logi-
cally as a join graph, where joins between the tables form-
ing the star schema are predefined in the metamodel and
materialized at run time by the accelerator engine. In ef-
fect, the metamodel bridges the gap between the structured
data cubes and search engine technology, which was origi-
nally developed to work with unstructured data. Currently,
the accelerator answers queries without the use of special
optimization strategies, or cached or precalculated data, al-
though the attached BI system implements a caching strat-
egy for responding to repeated queries.

D1

Fact Table D2

D4 D3

Figure 5: SAP NetWeaver BI InfoCube extended
star schema

The SAP InfoCubes that store business data for reporting
normally receive only infrequent updates and inserts. The
accelerator index structures were designed to support such
read-only or infrequent-write scenarios for Bl reporting. But
the accelerator has also been designed to handle updates
efficiently in the following two respects:

e Updates to an InfoCube are visible with minimal delay
in the accelerator for query processing, and

e Accumulated updates do not degrade response times
significantly.

To handle updates to the accelerator index structures, the
accelerator uses a delta index mechanism that stores changes
to an index structure in a delta index, which resides next to



the main index in memory. The delta index structure is op-
timized for fast writes and is small enough for fast searches.
The engine performs searches within an index structure in
parallel over both the main index and the delta index, and
merges the results. From time to time, to prevent the delta
index from growing too large, it is merged with the main
index. The merge is performed as a background job that
does not block searches or inserts, so response times are not
degraded.

In case of problems involving loss or corruption of data,
the accelerator is able to detect correctness violations and
invalidate the affected relations. To restore corrupted data
it needs to recreate the relevant index structures from the
original InfoCubes stored on the database.

2.4 Data Compression Using I ntegers

As a consequence of its search engine background, the BI
accelerator uses some well known search engine techniques,
including some powerful techniques for data compression,
for example as described in [15]. These techniques enable
the accelerator to perform fast read and search operations
on mass data yet remain within the constraints imposed by
installed memory.

Data for the accelerator is compressed using integer coding
and dictionary lookup. Integers represent the text or other
values in table cells, and the dictionaries are used to replace
integers by their values during post-processing. In partic-
ular, each record in a table has a document ID, and each
value of a characteristic or an attribute in a record has a
value ID, so an index for an attribute is simply an ordered
list of value IDs paired with sets of IDs for the records con-
taining the corresponding values (see figure 6). To compress
the data further, a variety of methods are employed, in-
cluding difference and Golomb coding, front-coded blocks,
and others. Such compression greatly reduces the average
volumes of processed and cached data, which allows more
efficient numerical processing and smart caching strategies.
Altogether, data volumes and flows are reduced by an aver-
age factor of ten. The overall result of this reduction is to
improve the utilization of memory space and to reduce I/O
within the accelerator.

Attribute Table Dictionary Index

Docld  Valueld Valueld Value Valueld DocldList
1 24 1 IEM 1

2 2 Microsoft 2

3 . 3 2.5

4 17 17 SAP 4

5

6 17 4

Figure 6: Data compression using integers

3. PERFORMANCE

To give a more tangible indication of the power of the BI
accelerator, this section presents the results of a performance
test comparing it with an Oracle 9 database. The accelerator

hardware consisted of six blades, each equipped with two
64-bit Intel Xeon 3.6 GHz processors and 8 GB of RAM,
running under 64-bit Suse Linux Enterprise Server 9. The
database hardware was a Sun Fire V440, with four CPUs
and 16 GB of memory, running under SunSoft Solaris 8.

In terms of CPU power and memory size, this is an unequal
comparison, but it is worth emphasizing that the two sys-
tems tested here are indeed comparable in economic terms,
which is to say in terms of the sum of initial and ongo-
ing costs. The accelerator runs on multiple commercial,
off-the-shelf (COTS) blade servers mounted in a rack and
paired with a commodity database as file server, where the
combination is marketed as a potentially standalone ap-
pliance with a competitive price. By contrast, an SAP
NetWeaver BI installation without the accelerator requires
a high-performance big-box database server, with both a
high initial procurement cost and high ongoing costs for ad-
ministration and maintenance. For business purposes, the
proper comparison to make is between alternatives with sim-
ilar TCO, not with similar CPU power and memory size.

The data and queries for the performance test were copied
(with permission) from real customers. The data consisted
of nine SAP InfoCubes with a total of 850 million rows in
the fact tables and 22 aggregates (materialized views) for
use by the database. This added up to over 130 GB of raw
InfoCube data plus 6 GB of data for aggregates in the case
of the database and a total of approximately 30 GB for the
data structures used in the accelerator.

The results do not support exact predictions about what
potential users of the BI accelerator should expect. In SAP
experience, companies with different data structures and dif-
ferent usage scenarios can realize radically different perfor-
mance improvements when implementing new solutions, and
the BI accelerator is likely to be no exception. Nevertheless,
the query runtimes cited here may be interpreted to indicate
the order of magnitude of the performance a prospective user
of the accelerator can reasonably expect.
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Figure 7: Performance comparison

Figure 7 shows the main results. It shows that the accelera-
tor runtime was relatively steady for very different queries.
Most of the queries tested ran in (much) less than five sec-



onds. This behavior has been confirmed in early experience
with BI accelerators installed at customer sites. Together,
these results may encourage an accelerator user to run any
query with reasonable confidence that excessively long re-
sponse times will not occur.

4. DATA MINING

As shown in such papers as [14], many business organiza-
tions regard the mining of existing repositories of mass data
to be an important decision support tool. Given this fact
and following the ideas in [11], the BI accelerator devel-
opment team has implemented some common data mining
technologies, such as association rule mining, time series and
outlier analysis, and some statistical algorithms. Because
the accelerator holds all relevant data in main memory for
reporting, data mining can be enabled without further repli-
cation of data and without the need to build special new
structures for mining. The implementation is intended to
enable BI accelerator users to perform data mining with-
out requiring any additional hardware resources, using the
architecture described above (section 2) and with minimal
additional memory consumption. To achieve this goal, there
were two main challenges to overcome:

e To reuse the existing accelerator infrastructure and
data structures for data mining, and

e To implement data mining efficiently enough to
achieve acceptable wait times.

This section briefly describes our implementation of asso-
ciation rule mining. The algorithm is designed to mine
for interesting rules inside the SAP InfoCube extended star
schema, in particular its fact and dimension tables. The
algorithm examines the attributes of the fact table and
searches for rules like: “If a customer lives in Europe (di-
mension: location) and sells cars (dimension: product), the
customer is likely to use SAP software (dimension: ERP
software)”. This knowledge can be exploited, for example,
to offer specific product bundles to targeted customers on
the basis of their inferred interests. The principles of how
to implement association rule mining are well known. To
find such association rules, it is necessary first to discover
frequent itemsets and then to generate rules from this infor-
mation.

Several algorithms for association rule mining on single and
multi-core machines are known (see, e.g., the papers [2, 7,
12]. These algorithms are able to handle arbitrary itemsets
of unrestricted size. For an SAP InfoCube fact table, it is
only necessary to handle a fixed number of dimensions or
attributes, which is defined by the user and bounded by the
number of columns of a relation. Given knowledge of the
maximum size of an itemset, one can simplify the mining
strategy to iceberg cubing. An overview of common associ-
ation rule mining algorithms can be found in [16].

One of the basic strengths of the accelerator is that it runs in
a distributed landscape. To handle association rule mining
in a distributed architecture, we implemented a two-step
algorithm:

1. A variant of BUC iceberg cubing introduced in [3]
mines for frequent itemsets in every partition of a dis-
tributed relation.
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2. A PARTITION-like consolidation of local results to a
global one proposed in [12] responds to user requests.

In subsection 4.1, we explain our mining algorithm on un-
partitioned relations. In subsection 4.2, we describe how we
use local mining results on multiple partitions to resolve the
global result on distributed relations.

We use the terminology introduced in [1] for association
rule mining. A row of a relation R can be stated as set
L = i1,12,...,i, where i is an item (a column entry) and n
the number of columns in R. |R| represent the cardinality
of R. The number of occurrences of any X C L is called
support(X). Every X with support(X) > minSupport,
where minSupport is a user-defined threshold level, is called
a frequent itemset. In distributed landscapes, in addition to
the global minSupport, a local minSupport for X is defined.
LocalminSupport for part n of relation R is defined as

| Rl
|R|
For rule generation, we use confidence defined as
support(IP)
support(I)

local MinSup, (R) = global MinSup *

confidence(IP C I,I) =

A generated rule with high confidence is probably more in-
teresting and significant for the user than rules with lower
values. Similarly to minSupport, we use a threshold level
for interesting rules, called minimum confidence minConfi-
dence. The optimum value for reasonable rules depends on
the data characteristics.

4.1 Frequent Itemset Mining with BUC

We start with the simple case of unpartitioned relations and
describe the mining algorithm on undistributed data.

The SAP NetWeaver BI accelerator engine has many of the
features proposed by [6] to implement efficient data mining.
These features include:

1. A very low system level,

2. Simple and fast in-memory, array-like data structures,
3. Dictionaries to map strings to integers,

4. Distribution of data to handle large datasets in mem-
ory.

Because of these features, the accelerator is an appropriate
infrastructure for association rule mining.

We adopted BUC as the frequent itemset mining algorithm
because it suits the internal data structures used by the ac-
celerator. The accelerator uses column-based relations and
very simple data structures, so it can achieve fast direct ac-
cess to arbitrary rows of an attribute, which is a significant
part of our BUC implementation.

The BUC algorithm works as follows. As with apriori-based
association rule mining techniques (described in [2, 9, 10]),
an initial scan for itemsets with one element is needed. To
resolve the counts, we perform one internal scan per at-
tribute. After filtering the attribute values with minimum



support, we use the row numbers of these values to resolve
support for all itemsets with size two. Their row IDs are
used to find itemsets of size three, and so on.

ABCD
ABC  ABD ACD BCD
/S A
/
i o
A8 AC AD BC ED co
b i o o
Py /
N // ; e
\__ P _,"
A B C u]
- ri =g
- -
L
- ,i’"'

Figure 8: Processing tree for BUC

In contrast to apriori-based algorithms, BUC works depth-
first. BUC generates an itemset (i1, 42,13, ...,in) of size n
out of itemset (i1, 42,43, ...,in—1). Figure 8 shows this proce-
dure. Itemsets are generated bottom-up, beginning on the
left branch of the tree in figure 8. At first, the occurrences
of distinct values in A, B,C' and D are counted in parallel.
With the results for attribute A, the algorithm determines
supports for the left branch AB, ABC and ABCD in a
recursive manner. Based on the row IDs for AB, a com-
putation of counts for ABD is easy and fast because we
only have to test the rows of AB for the values of attribute
D. The recursion stops iff the minimum support for an
itemset I = (i1,142,13,..,%n) is missed or no more itemsets
(41,112,143, .., in, in+1) can be generated out of I. In this way,
the whole cube (support = 1) or partial cube (support > 1)
can be computed efficiently inside the accelerator engine us-
ing low-level read access.

To optimize this procedure, the attributes are ordered by the
number of distinct values. For example, in figure 8, A is the
attribute with the maximum number of distinct values and
attribute D that with the minimum. This heuristic is de-
scribed in [3] and uses the assumption that for uniformly dis-
tributed values the average support counts for single values
with minimum support decreases with increasing number of
distinct values. In this case, the lower number of occurrences
of value v4 found on A causes fewer checks on B, BC and
BCD to count support for itemsets (va,vg),(va,vn,vc)
and (va,vB,vc,vp). In general, this reduces the overall
number of rows to read. The worst-case scenario for this
heuristic is an attribute with many distinct values having
very low support but a few values having very high support.
This causes a serious reduction of performance.

Other heuristics, such as skew-based ordering, are also possi-
ble. We implemented ordering by number of distinct values
because this information can be extracted easily and quickly
from statistics available in the accelerator engine. But as [3]
states, for real datasets only slight differences between these
heuristics are observed. Nevertheless, the conditions for an
optimum ordering of attributes cannot be guaranteed for
real business data, so for future implementations the best
ordering strategy may be chosen dynamically.
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Algorithm 1 gives an impression of our implementation.

Algorithm 1 Algorithm BUC
Require: minSupport and A « list of attributes

1: function BUC(tuple, rowids, attpos, results)
2: {
3: for all value € attributeqttpos do

4:  newRows =] ]

5:  for all rowid € rowids do

6: if value == attributeqtipos[rowid] then
7 new Rows.add(rowid)

8: end if

9: end for

10:  support = size(newRows)

11:  if support >= minSupport then
12: newTuple = (tuple + value)
13: results < (newTuple, support)
14: if attPos < size(A) then

15: BUC(newTuple, newRows,
16: attPos + 1, results)
17: end if

18:  end if

19: end for
20: }
21:
22: for all a € A do
23:  walues, rowids, counts = countSupports(a)
24:  filter(counts >= minSupport)
25: end for
26:
27: results = [ |
28: for all value € values do
29:  results « value
30:  BUC(value,rowids, 1, results)
31: end for
32:
33: return results

The algorithm starts with a list of attribute values with
minimum support for every attribute. The FOR statement
in line 28 represents the main loop. Line 29 appends the
frequent attribute value as frequent itemset I with [I| = 1
to the result set and line 30 starts the generation of frequent
itemsets based on I.

The BUC function in lines 1 to 20 is used to build itemsets,
count their occurrences, and run BUC recursively for the
next attribute if support is given.

The function get a base itemset called tuple, a list of row IDs
for tuple, the position of the attribute to check called attpos,
and a result list to store itemsets with minimum support.

Line 3 is used to determine all values of attribute attpos to
check if these values occur on rows in rowids on line 5. The
hits are stored in newRows. As a consequence the number
of entries in newRows is the support for the new itemset
I = (tuple + value).

If minimum support is given for I in line 11, it is stored in
the result list results and, if possible, line 15 initiates the
scans for the itemsets based on I.



4.2 Consolidation of L ocal Results

After the local mining step on all partitions, a consolidation
of these local result sets is needed for our implementation.
Here we have two possible cases to consider when merging
all local itemsets to global itemsets:

1. An itemset was found in all partitions.

2. An itemset was missed in some partitions.

As shown in [12], it is not possible to miss a globally fre-
quent itemset in every partition because all globally frequent
itemsets must be locally frequent on at least one partition.
So the distributed BUC algorithm delivers complete results.
But if the counts for some partitions are missing, the item-
set counts can be globally wrong. To ensure the correctness
of the algorithm, it is necessary to sum up all local support
counts to a global support. Any itemset with a least one
missing count can be:

1. Frequent, but potentially with lower support,

2. Not frequent, but minSupport is reachable with miss-

ing partitions, or

Not frequent, and minSupport is not reachable with
missing partitions.

In cases 1 and 2, additional searches are needed; in case 3,
the itemsets can be dropped.

The next step is to resolve the missing counts. After sum-
mation of all available local support counts for an itemset
1, we resolve all missing itemsets I, for all partitions p € P
of a relation R and count their occurrences on all partitions
in parallel. With these results, the final support for globally
frequent itemsets can be computed.

Algorithm 2 describes this procedure. Lines 5 to 8 are used
to run the local data mining steps with BUC. Lines 11 and
12 consolidate the local results to global results and filter all
itemsets that still get or can get minimum global support.
For these sets, lines 15 to 21 resolve missing counts for every
partition. Line 23 computes the final result set.

Rescans for missing counts on partitions are done in parallel.
We use a technique similar to BUC with support = 1, except
that we only scan for values defined in at least one missing
itemset.

All the itemsets to scan for on a partition are bundled to
reduce scan effort. We do this by ordering all missing item-
sets on that partition so that, if possible, itemsets following
in order have an equal subset of items. This procedure pre-
vents multiple scans for the same itemset because we can
reuse the results for the shared subset to get the support for
I+1 based on an intermediate result for I,,.

4.3 Performance Evaluation

The performance evaluation was conducted as follows. The
tests ran on up to 11 blade servers. Each blade was equipped
with dual 32-bit Intel Xeon 3.2 GHz processors and 4 GB of
main memory, and the blades were connected in a network
with 1 gigabit/s bandwidth. The operating system was Mi-
crosoft Windows Server 2003 Enterprise Edition SP1. The
SAP NetWeaver Bl accelerator was compiled in Microsoft
Visual C++ .NET.
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Algorithm 2 Algorithm Distributed BUC
Require: 0% < minSupport < 100%.

P < all partitions of a relation
results = | |

/* step 1 */

for all p € P do
rp = BUC(p)
results < rp

end for

: /* step 2 - 1%/
: itemsets = consolidate(results)
. filter FrequentItemsets(itemsets, minSupport)

: [*step2-2%*/
: for all p € P do
for all i € itemsets do
if i ¢ rp, then
results «— countMissingltemset(p,1)
end if
end for
: end for

: itemsets = consolidate(results)
. filter FrequentItemsets(itemsets, minSupport)

: return itemsets

431 Data

We used several different datasets to validate our implemen-
tation and chose two of them for this evaluation:

1. Three versions of a mushroom table (http://www.
ailab.si/orange/datasets.asp) with original sizes
of 8126, 812600, and 8126000 rows and 10 attributes

Real customer business data from an SAP InfoCube
with about 180 million rows and 15 attributes rele-
vant for association rule mining. The attributes have
between 1 and 20000 distinct values.

The mushroom set is inflated in size by adding the original
data 100 or 1000 times to new tables. This causes 100 or
1000 replications of every row of the original table. These
rows are randomly distributed over all partitions. Associa-
tion rule mining on these inflated mushroom tables results in
the same frequent itemsets and rules as for the base version
of the mushroom but with 100 or 1000 times the absolute
support. The relative support (%) and confidence are
constant. This dataset is used to show the effect of table size
on execution time and the scaling of execution time with the
number of utilized blades. Table 1 shows the dependency be-
tween support and the number of frequent itemsets, which
grow exponentially but with shrinking support. The effect
of this behavior is a serious increase of I/O and merge costs
for low support values.

The real business dataset should close the gap to the practi-
cal utilization of the algorithm. The inspected table was the
fact table of a real customer SAP InfoCube, the attributes
were dimension IDs with 5 to 100000 distinct values. Table



Support | # of frequent
itemsets

55% 8
42% 21
31% 69
19% 252
12% 542
6% 2277
3% 7076
1% 19810
0.9% 25143
0.3% 54522
0.2% 80706

Table 1: Number of frequent itemsets with mush-
room dataset

Support | # of frequent
itemsets

10.00% 171
6.00% 418
4.00% 826
2.00% 3533
1.50% 6085
1.00% 11735
0.50% 35023
0.25% 96450

Table 2: Number of generated frequent itemsets
with business data

2 shows the number of generated frequent itemsets for this
data. Association rule mining with support = 6% generated
more than 150 rules with confidence > 80%. Mining with
support = 4% and confidence > 80% produced more than
1300 rules for this dataset.

432 Test Results

The test results shown in figures 9 and 10 plot the runtime
of the distributed BUC algorithm for growing support val-
ues, with figure 10 zooming in on very low support values.
As shown in various papers, such as [5, 8], association rule
mining generates an exponentially growing number of fre-
quent itemsets with decreasing support values. Therefore,
the performance plotted in the figures scales as expected.

A more interesting fact is that the effectiveness of scaling
worsens as the number of partitions increases. With low
support values and few frequent itemsets, a nearly linear
scaling of runtime to number of partitions can be observed.
But lower supports combined with a larger number of gen-
erated frequent itemsets results in a massive increase of I/O
costs and merge/rescan effort in algorithm step 2. This re-
duces the benefit of parallel mining as the number of parti-
tions increases. Figure 10 shows this behavior clearly. The
performance degrades with increased distribution and can
easily slow down performance so far that it approaches the
runtime on unpartitioned data, despite the use of much more
hardware power.
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The number of frequent itemsets does not depend on the car-
dinality of the relation they are generated from. Distributed
BUC generates nearly equal amounts of frequent itemsets on
every partition, so long as the data is distributed randomly
and same relative minSupport is used. Therefore the data
sent to be merged increases only with decreasing support
and increasing number of partitions.

As a consequence, partitioning should be reduced to a min-
imum for mining with low support values. In the business
scenarios that we wish to support, partitioning is required
for parallel computation of business queries and the acceler-
ator must tolerate it for mining. Heavy partitioning should
be used on large datasets and support values with moder-
ate numbers of generated frequent itemsets. Such scenarios
show nearly linear scaling with the number of parts.

Figures 11 and 12 compare the measured performance of
mining relative to the theoretical runtimes with linear scal-
ing. Figure 11 plots the respective speedup factors for
various support percentages with N-part partitioning, for
N =1,2,4,6,8,10. Figure 12 shows the same runtimes, but
relative to the optimum solution with linear scaling.

The scaling of our implementation with growing amounts of
examined data is shown in figure 13. The experiment used
datasets of different sizes with the same relative frequen-
cies of attribute values. The data was unpartitioned and
the algorithm ran on only one blade. The results show a
linear increase of runtime with amount of data. This is a
consequence of the basic characteristic of the BI accelerator
that it performs selections by a full attribute scan, without
additional tree or index structures. Thus a scan requires a
fixed amount of time for each attribute value, and overall
scan time grows linearly with the number of rows. In any
case where the relative occurrence of attribute values in the
data is constant, all mining steps are equal and have the
same relative but different absolute support. In those cases,
the overall number of full attribute scans to generate all fre-
quent itemsets is identical and overall runtime shows linear
scaling.

Figure 14 shows the performance results for the real busi-
ness data scenario with 180 million rows divided into 11
partitions, each part with a size of 430 MB. In this test,
the number of partitions is predefined because the table has
been prepared for reporting on its business data. The results
appear to confirm the feasibility of using the BI accelerator
for online association rule mining.

5. CONCLUSION AND FURTHER WORK

Our recent development work on SAP NetWeaver Business
Intelligence accelerator has focused on adapting it to handle
online data mining in large data volumes. The tests reported
in this paper indicate that adapting the accelerator for data
mining is feasible without having to introduce any new data
structures, and is fast enough on modest hardware resources
to offer practical benefits for SAP customers. To complete
this development, we need to integrate the mining algorithm
into the syntax of the query processing architecture of the
accelerator. Once this integration is accomplished, the ac-
celerator will be able, for example, to perform association
rule mining with consideration of specific characteristics in
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dimensions at a very low system level with reasonable per-
formance.

Our test results suggest that useful online mining should be
possible with wait times of less than 60 seconds using real
business data that has not been preprocessed, so long as
it generates appropriate support values. An issue that has
yet to be resolved is that accelerator users may find it hard
to configure the data mining parameters, and fixed defaults
are not applicable. A promising approach here is to use in-
formation stored in SAP NetWeaver BI to precalculate and
display to the user possibly interesting values for the para-
meters governing attributes, support and confidence. Such
information for precalculation of context-sensitive defaults
includes, for example, information about hierarchic depen-
dencies within the BI data structures and about the seman-
tics of attributes and dimensions. This information would
also be useful for optimizing performance and filtering con-
clusive rules. Much work remains to be done here, but the
goal of enabling data mining for users of an inexpensive ap-
pliance is both practical and compelling.
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